result, and the postimpact pair might then remain in resonance.

The tendency for oblique low-velocity collisions between similarly sized objects to produce substantial amounts of material in bound orbit suggests that the impact generation of satellites is a common outcome of late-stage accretion, with the Earth-Moon \((q = 0.01\) and \(J = 0.115)\) and Pluto-Charon offering examples of the potential range of \(q\) and \(J\) in systems produced by such events. Requiring \((v_{\text{imp}}/v_{\text{esc}}) < 1.3\) for forming large satellites based on the simulations here implies that binary systems produced through such singular impacts would have (from Eqs. 1 and 2) \(J \lesssim 0.8\).

References and Notes
11. Our SPH simulations ignore material strength. A fluid description is valid when stresses associated with self-gravity (as well as compressional pressures associated with the impact event itself) greatly exceed the material strength, which is true for the size objects considered here [35].
18. Rotation periods for the impactor and target between 3 and 13 hours are considered here. Estimates of rotation periods for Kuiper belt objects with \(R > 10^6\) km range from about 6 (Varuna) to 14 (2001 QG298) hours [24].
19. The Roche limit, \(a_{\text{Roche}} = \frac{2.568}{(p/p_1)^{1/3}}\), is the closest distance a fluid strengthless body of density \(\rho_1\) can stably exist from a radius \(R_1\) and density \(\rho_1\) primary. At the end of each run, we classified particles as escaping (positive kinetic + potential energies), orbiting, or in the planet. A particle was considered to be orbiting if its total energy was negative, and the \(z\) component of its angular momentum exceeded that of a circular orbit at the surface of the planet. We defined an equivalent circular orbit as one having the same angular momentum as computed for a given particle but with \(e = 0\). If \(a_{\text{Roche}} > a_{\text{circular}}\), the particle was considered to be on a Roche exterior orbit.
21. The resulting satellite would be smaller if substantial mass were lost from the disc subsequent to the impact or larger if angular momentum was transferred to the disc material before the satellite formed.
23. Tides in an initially eccentric Charon-sized satellite (Fig. 2) would circularize its orbit in \(\sim 10^6\) to \(10^7\) years [22], yielding \(\Delta t \sim 20\) K. Rapid accretion of the satellite

Farming and the Fate of Wild Nature

Rhys E. Green,1,2* Stephen J. Cornell,1,3 Jörn P. W. Scharlemann,1,2 Andrew Balmford1,4

World food demand is expected to more than double by 2050. Decisions about how to meet this challenge will have profound effects on wild species and habitats. We show that farming is already the greatest extinction threat to birds (the best known taxon), and its adverse impacts look set to increase, especially in developing countries. Two competing solutions have been proposed: wildlife-friendly farming (which boosts densities of wild populations on farmland but may decrease agricultural yields) and land sparing (which minimizes demand for farmland by increasing yield). We present a model that identifies how to resolve the trade-off between these approaches. This shows that the best type of farming for species persistence depends on the demand for agricultural products and on how the population densities of different species on farmland change with agricultural yield. Empirical data on such density-yield functions are sparse, but evidence from a range of taxa in developing countries suggests that high-yield farming may allow more species to persist.

Clearance for cropland or permanent pasture has already reduced the extent of natural habitats on agriculturally usable land by more than 50% (1–3), and much of the rest has been altered by temporary grazing (4). Intensive management to increase production—through irrigation and the application of fertilizers and pesticides—can further reduce the wildlife value of farmland. Although growth in global food production outstripped population growth between 1961 and 1999, this was achieved through a 12% increase in the global area of cropland and a 10% rise in the area of permanent pasture (2, 3). Overall food crop yield per unit area (3) grew by 106%, but this was linked to a 97% rise in the area of land under irrigation, and 638%, 203%, and 854% increases, respectively, in the use of nitrogenous and phosphate fertilizers and the production of pesticides (2, 5, 6). These impacts look set to grow still further (5). With the human population predicted to rise to between 8 and 10 billion (7, 8) and with rapidly increasing per capita consumption (9), overall food demand is expected to increase two- to threefold by 2050 (6, 10). Here, we propose an agenda for the research needed to identify how this enormously increased demand can be met at the least cost to the other species with which we share our planet.

Agricultural change: A tale of two worlds. From the perspectives of both development and conservation, globally averaged changes in agriculture mask important spatial variation, with more pronounced recent changes in the developing world, where most species reside. For instance, since 1961 the total area of cropland in the developing world has increased by over

27 October 2004; accepted 29 December 2004 10.1126/science.1106818

550 28 JANUARY 2005 VOL 307 SCIENCE www.sciencemag.org
20%, whereas developed world cropland area has shrunk (Fig. 1A). A similar pattern emerges for permanent pasture (Fig. 1B). These differences in the rates of change of farmland area are not offset by lower yield growth in developing countries. Crop yields (3) have grown steadily in both the developing and developed world, with the former lagging the latter by an average of roughly 20 years (Fig. 1C). Annual growth in yield is now higher in the developing world. Further evidence that farming is changing faster in the developing world comes from trends in livestock production. Because of increasing domestic demand (9), per capita meat production is rising rapidly in the developing world, whereas elsewhere it is declining; more than half of global meat production now takes place in developing countries (Fig. 1D). How are these changes impacting wild habitats and species?

Differing impacts of farming on wild nature. Several kinds of data suggest that, although it is an important driver almost everywhere, the effect of agricultural change on wild nature is now greatest in developing countries. Coarse-scale evidence of changes in forest cover shows that recent net gains in temperate and boreal forest cover are more than offset by continued losses in tropical regions, largely by conversion to agriculture (11). Patchy data on changes in populations of temperate and tropical forest vertebrates confirm this pattern (12, 13). For a more detailed picture of the relative importance of threats to biodiversity posed by farming, we used BirdLife International's World Bird Database (3) to dissect the problems faced by all 1923 species of globally threatened and Near-Threatened birds; data for no other taxa permit such detailed and comprehensive analysis.

These data show that farming (including conversion to farmland and its intensifying use) is the single biggest source of threat to bird species listed as threatened (accounting for 37% of threats) and is already substantially more important for species in developing countries than those in developed countries (40% and 24% of threats, respectively; Fig. 2A). For developing and developed countries alike, the scale of the threat posed by agriculture is even greater for Near-Threatened species (57% and 33% of threats, respectively; Fig. 2B). Because these species are likely to become threatened in the near future (14), this implies that agriculture is a growing threat to bird species. There are also larger absolute numbers of threatened and Near-Threatened species in developing countries than in developed countries (threatened, 1039 versus 225 species; Near Threatened, 687 versus 95). Taken together, these data indicate that agriculture is the major current and likely future threat to bird species, especially in developing countries. Given the growing scale and impacts of agriculture, how should we best resolve the need for increased food production with the desire to minimize its impact on what remains of wild nature? Two sorts of suggestions predominate.

Wildlife-friendly farming. Many conservation biologists argue that the global application of wildlife-friendly farming methods would reduce the impact of agriculture on biodiversity. Approaches include the retention of patches of natural habitat and extensively farmed seminatural habitats within the countryside and farming in ways that minimize the negative effects of fertilizers and pesticides on nontarget organisms (15–20). Such wildlife-friendly farming receives particularly strong support in Europe, where evidence of declines in the previously high biological value of long-established agroecosystems (17, 21, 22) is used to justify agri-environment payments worth over $2.7 billion each year to European Union farmers (23). There are far fewer data on farmland biodiversity in less

*To whom correspondence should be addressed.
E-mail: reg29@hermes.cam.ac.uk

Fig. 1. Changes in agriculture in the developing and developed worlds (3), 1961 to 2000, showing annual changes in cropland (A), permanent pasture (B), mean crop yields for the 23 main food crops (3) (C), and per capita and total meat production (D). In (A) and (B), farmed areas are plotted as a percentage of usable land (3). Filled symbols are for developing world, open for developed. In (D), circles are for per capita meat production, diamonds for total meat production.

Fig. 2. The mean proportion of a species' listed threats that are attributable to agriculture plotted for threatened (A) and Near-Threatened (B) birds from the developed (white) and developing (black) world (3).
developed regions, but evidence that about half of Costa Rica’s native forest species of birds, mammals, butterflies, and moths also occur in agricultural areas (table S1) has been used to argue that maintaining low-intensity agriculture will benefit biodiversity in developing countries as well (18–20) (table S1).

It is clear that adopting farming methods that enhance population densities of wild plant and animal species on farmland is beneficial to biodiversity, provided that the change to wildlife-friendly farming does not require a reduction in crop yield (19, 24). However, it is frequently observed that the biodiversity value of farmland declines with increasing yield (17, 21, 22), which suggests that maintaining high wildlife interest on farmland often requires foregoing opportunities for high crop yields. Existing agri-environment schemes depend on farmers receiving large amounts of financial compensation for lost production, demonstrating that such yield penalties are perceived as real. Their existence underlies a very different school of thought on how best to simultaneously deliver food production needs and meet conservation goals.

Land sparing. This second approach hinges on moving beyond thinking solely about the farmed landscape to considering the consequences of yield penalties for the total area of farmed versus nonfarmed land. Although wildlife-friendly farming is beneficial on farmland, if it reduces yield then a larger area must be farmed to meet any given production target. Both the Costa Rican and other results (table S1) show that even under benign agriculture, farmland usually hosts far fewer species—especially those of conservation concern—than do the relatively intact habitats from which it was derived. Hence, if yield penalties from wildlife-friendly farming are sufficiently large, the best route to meeting both food production and conservation goals may be to increase yields on already converted land, thereby reducing the need to convert remaining intact habitats, and potentially freeing up former farmland for restoration to a more natural state.

This land-sparing argument is rarely made by conservationists (25, 26), but is

Fig. 3. Essential features of the model relating species population size to agricultural yield, shown by two examples. In the first (A), a province, shown as a map (1), is composed of farmed (yellow) and nonfarmed (green) land. The target agricultural production is \(x = 0.2 \), which could be achieved by highest yield farming on 20% of the land area (left panels) or by farming all the land at lowest possible yield (right panels). The organism exhibits a concave density-yield function (red curve in 2), with its highest population density on nonfarmed land (where it is set to 1) and far lower density under highest yield farming than under lowest yield farming (compare stars on left and right panels in 2). The total population size of the whole province can be visualized by shading the maps (3), so that for each habitat, the vertical extent of hatching is proportional to relative population density. The summed area of the hatched zones, relative to that of the whole province, then gives the total population size relative to the population size that would occur if the whole province were unfarmed. These relative population sizes, for nonfarmed and farmed areas and the province as a whole, are shown in the histograms (4). In this case, the total population is higher with lowest yield farming. In the second example (B), the situation is the same, except that the density-yield relationship is convex. In this example, the steep drop in density even at low yields means that land sparing is worthwhile and the total population is higher with highest yield farming.
widely advocated in the agriculture and
development literature (27–33). Retrospective
calculations for the United States,
China, and India suggest that, without the
marked increases in yields seen over recent
decades, producing the amounts of food
currently grown there would require 2 to 4
times more land under crops than at present
(28, 33–35). Moreover, comparisons among
Latin American countries provide empirical
evidence that, taking other factors into
account, land sparing has occurred: In the
1980s, countries with higher agricultural
yield had lower deforestation rates (30), and
those with higher yield increases had lower
rates of increase in farmland area (27).
Finally, prospective calculations show that
without yield increases, even maintaining
current per capita food consumption would
necessitate a near doubling of the world’s
cropland area by 2050; by comparison,
raising global average yields to those cur-
cently achieved in North America could
result in very considerable land sparing (28).

Hence, although wildlife-friendly farming
offers scope to increase the biodiversity
value of farmed land on a per unit area
basis, this may not result in a net benefit to
biodiversity if it reduces crop yield. On the
other hand, increasing yield could reduce the
requirement for farmland and the rate of
conversion of currently nonfarmed land. We
may therefore face a choice between having
a greater area of low-yielding wildlife-
friendly farmland and less intact habitat or
having a smaller area of high-yielding, less
wildlife-friendly farmland and more area
available for wild nature elsewhere. Identifying
the key parameters that can resolve this
trade-off requires a model.

Modeling the trade-off. Our model
relates the population size of individual
species within a large area (“province”) to
the yield per unit area of farmed land and the
target agricultural production required. We
focus on one species at a time to allow for
evident differences between species in how
they respond to changing agricultural activity.
Results can later be combined across
species and used to optimize province-wide
metrics such as the proportion of species
committed to extinction. The model province
consists of a farmed part (which can include
patches of natural habitat) and a nonfarmed
part, and it is uniform in its potential
suitability for both farming and the species
of interest. We ignore any negative external
effects of farming on wildlife in nonfarming
areas. Crop yield x of the farmed land is
calculated to the maximum attainable
over a large area, and the target level of
production of agricultural goods a is assumed
to be fixed and is scaled in terms of
the proportion of the province needed to
grow it if yield were at the maximum (i.e., at
$x = 1$). The minimum yield that can still
produce the production target is $x = a$
(because the whole of the province must be
farmed to grow the target at this yield), and
the permissible yield lies in the range $a \leq x \leq 1$. For a given yield x' within this range,
we assume that the production target is just
met, so that the proportion of the province
that is farmed is a/x' and the proportion that
is nonfarmed is $1 - (a/x')$.

To see how yield then affects the popula-
tion of a given species, consider a species-
specific density-yield function, whereby
population density is some function $f(x)$ of
yield, and is scaled to 1 on nonfarmed land
($f(0) = 1$). The overall population of a species
across the whole province is then the sum
of its population on nonfarmed land $1 - (a/x')$
and its population on farmed land $f(x') (a/x')$,
which is $1 + (a/x') (f(x') - 1)$. Considering
first a concave density-yield function (Fig.
3A, red curve), highest yield farming ($x = 1$,
summarized in the left panels) is associated
with very low relative population density on
farmed land (star in step 2), but with a large
area of nonfarmed land with relative popula-
tion density of 1 (step 3), containing most of
the total population (step 4). In contrast,
 farming at the lowest permissible yield ($x = a$
, right panels) results in a far higher density
on farmed land than with high-yield farming
(star in step 2), which in this case more than
offsets the loss of population associated with
having no nonfarmed land. For this density-
yield function, the total population size of this
species is thus higher with lower yield than
with highest yield farming. Working through
the same logic with a convex density-yield
function (Fig. 3B), it can be seen that the
population density on lowest yield farmed
land is now considerably lower than with the
concave function, and the total population is
higher with highest yield farming (the sum of
few individuals on farmed land plus many on
the nonfarmed land spared from conversion).
Comparison of these two examples therefore
shows that the shape of a species’ density-
yield function affects which farming regime
maximizes its overall population.

To explore the effects of different density-
yield functions more systematically, consid-
er a graphical version of the model (Fig.
4A). This includes both a density-yield
function (red curve) and a vertical threshold
line (in black) at $x = a$, representing the
minimum yield that can meet the production
target. For any given yield x' in the
permissible range ($a \leq x' \leq 1$), it can be
shown that the y value at which a chord
drawn from $x = 0$, $y = 1$ to the red curve
at x' intersects the vertical threshold line
gives the total population size of the
organism at x', summed across the entire
province and scaled relative to the population that
would result if the entire province were
nonfarmed [relative population size $= 1 + (a/x') (f(x') - 1)]$. By considering where all
such permissible chords intersect the vertical
threshold, one can identify the yield at which
total population size is maximized.

Thus, in Fig. 4A (corresponding to Fig.
3A), the chord for lowest permissible yield

Figure 4. A graphical version of the model. (A) A concave density-yield function $y = f(x)$ (red curve; same as in Fig. 3A). The vertical threshold line (black) shows the minimum yield that can meet the target agricultural production ($a = 0.2$). A chord drawn from $x = 0$, $y = 1$ to the red curve at x', $f(x')$ at any point in the permitted range $a \leq x' \leq 1$, intersects this vertical threshold at $1 + (a/x') (f(x') - 1)$, which is the total population size of the organism in the entire province scaled relative to the population size that would occur if the entire province were nonfarmed. The blue line (termed the critical chord) joins the points on the red curve for $x = 0$ and $x = 1$; its intersection with the vertical threshold (blue square) gives relative population size under maximum yield farming. The green line runs from $x = 0$, $y = 1$ to the red curve at 0.2, $f(0.2)$, and so its intersection with the vertical threshold (green square) gives the relative population size at lowest possible yield; this is greater than that under highest yield farming, and indeed that of any other chords in the permitted yield range. Indicating that the total population size is maximized under lowest yield farming. These results are the same as those obtained in steps 1 to 4 of Fig. 3A. (B) Same as (A), except that the convex function from step 2 of Fig. 3B is used (with the same results as steps 1 to 4). This time the critical chord cuts the vertical threshold above the green chord and any other permissible chords, so the total population is highest when yield is highest.
R E S E A R C H A R T I C L E S

the proportion of species committed to ex-

optimal farming regime, which minimizes

tion (6, 24, 32, 37). Furthermore, low-yield farming may also af-

fect nonfarmed habitats and, although the ef-

fect per unit of farmed area may be less severe,

the total impact might be greater than for high-

yield farming if larger areas of farmland are

needed to meet a production target.

Second, the model supposes that agricul-
tural production is at a fixed level for a given

scenario, so that an increase in yield results in

a proportionately reduced area required for

farming. In practice, both empirical and

theoretical evidence suggest that land spar-
ing can sometimes be imperfect. If product

demand or labor supply are elastic, or if

technological changes free up rather than use

up labor, increasing yields can in effect

increase production targets, thereby adding to

the requirement for agricultural land (24, 31, 38).
The model also assumes that nonfarmed land spared from agricul-
tural use will not be converted to some other

human use unfavorable for biodiversity.

Offsetting these points about likely im-

perfections in the operation of land spar-
ing, it is also worth noting that there are

imperfections in the real world in the deliv-

ery of biodiversity benefits by wildlife-

friendly farming techniques (39).

Last, the model assumes that population

size is given simply by the product of density

and area. The size and distribution of patches

of farmed and nonfarmed land are ignored,

but fragmentation of preferred habitat would

be expected to influence population density

and viability. We also ignore dispersal

between farmed and nonfarmed land, yet

because of the effects of habitat quality on

demographic rates, the population in one

compartment might only persist because of

net immigration from the other (40).

Although the model could be elaborated
to incorporate externalities, imperfect land

sparring, the spatial configuration of different

land-use patches, and source-sink dynamics,

we consider that our main conclusion would

hold: The best way to reconcile farming and

conservation depends on actual production
targets and, crucially, on the relative fre-

quency of species with different density-yield

functions.

Prospects for wildlife-friendly farming

versus land sparing. At present, we know

little about how population densities of

species on farmed land change with yield,

although some forms of the density-yield

function seem unlikely to be frequent (SOM

text). Few studies have measured density

comparably across a range of production

regimes, and fewer still have simultaneously

measured agricultural yields. Nevertheless,

the growing number of studies indicating that

half or more of all species of unmodified

habitats are absent even from low-intensity

farmland (table S1) suggests that many spe-

cies are likely to exhibit negative-trending

convex density-yield functions (Fig. 4B).

These species will fare best under maximum-
yield agriculture combined with land spar-

ing. Such beneficial land sparing is perhaps

easiest to envisage in developing countries

with limited histories of farming and large

numbers of agriculturally naïve species,

where increasing yields may reduce the

pressure to clear intact habitat. However,

insofar as valuable wildlife habitat can be

restored or recreated on abandoned farmland,

and agriculturally sensitive species still exist,

land sparing through yield increases may

also be important in regions with long

histories of agriculture; indeed, coupling

appropriately managed intensification with

abandonment and restoration elsewhere may

be a principal route to achieving new and

ambitious programs of large-scale habitat

recovery in Europe and elsewhere (41–43).

An agenda for empirical research. What

kinds of farming give the best prospect of

minimizing losses of wild nature to

habitat removal and change while providing

food for a growing and more demanding

human population? This paper does not

provide an answer to that question. However,

it does make explicit the nature of the

quandary about whether high-yield or low-
yield farming, or something in between, is

best for biodiversity. Above all, our analysis

highlights the need to know more about

density-yield functions of real species in the

real world, about how they might be

modified by changes in agricultural and

conservation methods, and about how far

different kinds of farming influence the

wildlife of nonfarmed areas. We also need
to know much more about the extent and

limits to which land is spared from agricul-
tural use because of increased yields. Rapid-
ly acquiring the data to address these issues

is essential if we are to make wise and

informed choices about how and where we

farm. Few other decisions will have as great

an influence on the fate of wild nature.

References and Notes

1. J. F. Richards, in The Earth as Transformed by Human

Action, B. L. Turner II et al., Eds. (Cambridge Univ.

2. FAOSTAT, FAO Statistical Databases (Food and

Agricultural Organisation of the United Nations,

3. Materials and methods are available as supporting

online material on Science Online.

4. B. Groombridge, M. D. Jenkins, World Atlas of

Biodiversity: Earth’s Living Resources in the 21st

Century (Univ. of California Press, Berkeley, CA,

2002).

8. United Nations Population Division, World Population

Prospects: The 2002 Revision Highlights (UNPD, New

York, 2003), available at www.un.org/esa/population/publi-
cations/wpp2002/WPP2002--HIGHLIGHTSrev1.PDF.
Ammonia Synthesis from First-Principles Calculations

The rate of ammonia synthesis over a nanoparticle ruthenium catalyst can be calculated directly on the basis of a quantum chemical treatment of the problem using density functional theory. We compared the results to measured rates over a ruthenium catalyst supported on magnesium aluminum spinel. When the size distribution of ruthenium particles measured by transmission electron microscopy was used as the link between the catalyst material and the theoretical treatment, the calculated rate was within a factor of 3 to 20 of the experimental rate. This offers hope for computer-based methods in the search for catalysts.

Detailed theoretical descriptions of the way in which solid surfaces act as catalysts for chemical reactions are now being obtained from density functional theory (DFT) calculations, which can be used to obtain the relevant activation energies. For example, Linic and Barteau have shown that a mean-field kinetic model of the selective oxidation of ethylene on an Ag catalyst, developed on the basis of DFT calculations, can describe experimental data (1). However, the mean-field description implicitly neglects the complexity associated with interactions between adsorbed surface species and the resulting existence of many different possible reaction paths. This problem was overcome recently by Reuter et al., in a DFT-based kinetic Monte Carlo description of the oxidation of carbon monoxide over a RuO2(110) surface (2).

Here we take the further step of developing a kinetic description that includes the full complexity of interactions and reaction paths for a complete catalytic reaction under industrial conditions over a packed bed of a high-surface-area nanoparticle catalyst. Using the ammonia (NH3) synthesis as the example, we show that DFT calculations can be used to directly predict a reaction rate for a supported nanoparticle Ru catalyst that is in good agreement with rate measurements performed over a wide range of industrially relevant synthesis conditions. The only experimental input included was the particle size distribution for the Ru catalyst, which was determined from transmission electron microscopy (TEM).

The synthesis of NH3 is probably the most studied reaction in heterogeneous catalysis, and it acts as the prototype reaction that has been used to develop many key concepts in the field (3). The best elementary metal catalysts (Ru and Fe) were discovered in large-scale screening experiments almost 100 years ago (4–6), and the nature of the rate-determining step for Fe-based catalysts, N2 dissociation, was pinpointed as early as 1934 (7, 8). About 25 years ago, surface science studies became possible and revealed a detailed picture of the N2 dissociation process (9–13). It has been shown experimentally (14–16) and theoretically (17–19) that there is a direct link between the results of the ultra-low-pressure surface science results and NH3 synthesis data at elevated pressure and temperature. Most recently, DFT calculations were used to quantitatively outline the complete reaction mechanism with all elementary steps on Ru (20). It has also been shown that it is possible to predict and understand the trends in reactivity when DFT calculations of